Title of Document : HIERARCHICAL BAYES ESTIMATION AND EMPIRICAL BEST PREDICTION OF SMALL - AREA PROPORTIONS
نویسندگان
چکیده
Title of Document: HIERARCHICAL BAYES ESTIMATION AND EMPIRICAL BEST PREDICTION OF SMALLAREA PROPORTIONS Benmei Liu, Doctor of Philosophy, 2009 Directed By: Professor Partha Lahiri Joint Program in Survey Methodology Estimating proportions of units with a given characteristic for small areas using small area estimation (SAE) techniques is a common problem in survey research. The direct survey estimates, usually based on area-specific sample data, are very imprecise or even unavailable due to the small or zero sample sizes in the areas. In order to provide precise estimates, a variety of model-dependent techniques, using Bayesian and frequentist approaches, have been developed. Among those, empirical best prediction (EBP) and hierarchical Bayes (HB) methods relying on mixed models have been considered for estimating small area proportions. Mixed models can be broadly classified as area or unit level models in SAE. When an area level model is used to produce estimates of proportions for small areas, it is commonly assumed that the survey weighted proportion for each sampled small area has a normal distribution and that the sampling variance of this proportion is known. However, these assumptions are problematic when the small area sample size is small or when the true proportion is near 0 or 1. In addition, normality is commonly assumed for the random effects in area level and unit level mixed models. However, this assumption maybe violated for some cases. To address those issues, in this dissertation, we first explore some alternatives to the well-known Fay-Herriot area level model. The aim is to consider models that are appropriate for survey-weighted proportions and can capture different sources of uncertainty, including the uncertainty that arises from the estimation of the sampling variances of the design-based estimators. Then we develop an adaptive HB method for SAE using data from a simple stratified design. The main goal is to relax the usual normality assumption for the random effects and instead determine the distribution of the random effects adaptively from the survey data. The Jiang-Lahiri type frequentist’s alternative to the hierarchical Bayesian methods is also developed. Finally we propose a generalized linear mixed model that is suitable for binary data collected from a two-stage sampling design. HIERARCHICAL BAYES ESTIMATION AND EMPIRICAL BEST PREDICTION OF SMALL-AREA PROPORTIONS
منابع مشابه
Some New Developments in Small Area Estimation
Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...
متن کاملSmall Area Estimation of the Mean of Household\'s Income in Selected Provinces of Iran with Hierarchical Bayes Approach
Extended Abstract. Small area estimation has received a lot of attention in recent years due to necessity demand for reliable small area statistics. Direct estimator may not provide adequate precision, because sample size in small areas is seldom large enough. Hence, by employing models that can use auxiliary information and area effects in descriptions, one can increase the precision of direct...
متن کاملAn adjusted maximum likelihood method for solving small area estimation problems
For the well-known Fay–Herriot small area model, standard variance component estimation methods frequently produce zero estimates of the strictly positive model variance. As a consequence, an empirical best linear unbiased predictor of a small area mean, commonly used in small area estimation, could reduce to a simple regression estimator, which typically has an overshrinking problem. We propos...
متن کاملThe Bayesian and Approximate Bayesian Methods in Small Area Estimation
Title of dissertation: THE BAYESIAN AND APPROXIMATE BAYESIAN METHODS IN SMALL AREA ESTIMATION Santanu Pramanik, Doctor of Philosophy, 2008 Dissertation directed by: Professor Partha Lahiri Joint Program in Survey Methodology For small area estimation, model based methods are preferred to the traditional design based methods because of their ability to borrow strength from related sources. The i...
متن کاملOn Conditional Mean Squared Errors of Empirical Bayes Estimators in Mixed Models with Application to Small Area Estimation
This paper is concerned with the prediction of the conditional mean which involves the fixed and random effects based on the natural exponential family with a quadratic variance function. The best predictor is interpreted as the Bayes estimator in the Bayesian context, and the empirical Bayes estimator (EB) is useful for small area estimation in the sense of increasing precision of prediction f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009